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Abstract. Persistence is studied in a financial context by mapping the time evolution of the values of the
shares quoted on the London Financial Times Stock Exchange 100 index (FTSE 100) onto Ising spins.
By following the time dependence of the spins, we find evidence for power law decay of the proportion
of shares that remain either above or below their ‘starting’ values. As a result, we estimate a persistence
exponent for the underlying financial market to be θf ∼ 0.5.

PACS. 05.20.-y Classical statistical mechanics – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)
– 75.10.Hk Classical spin models – 75.40.Mg Numerical simulation studies

1 Introduction

In its most general form, persistence is concerned with the
fraction of space which persists in its initial state up to
some later time. The problem has been extensively studied
in recent years for pure spin systems at both zero [1–4] and
non-zero [5] temperatures.

For example, in the non-equilibrium dynamics of spin
systems at zero-temperature, the system is prepared in a
random state at t = 0 and the fraction of spins, P (t),
that persist in the same state as at t = 0 up to some
later time t is studied. For the pure ferromagnetic two-
dimensional Ising model the persistence probability has
been found to decay algebraically [1–4]

P (t) ∼ t−θ, (1)

where θ ∼ 0.22 is the non-trivial persistence expo-
nent [1–3].

The value of θ depends on both the spin [6] and spa-
tial [3] dimensionalities; see Ray [7] for a recent review.

At non-zero temperatures [5], consideration of the
global order parameter leads to a value of θglobal ∼ 0.5
for the two-dimensional Ising model.

Very recently, disordered systems [8–10] have also been
studied and have been found to exhibit different persis-
tence behaviour to that of pure systems.

Persistence has also been studied in a wide range of
experimental systems and the value of θ ranges from 0.19
to 1.02 [11–13]. Much of the recent theoretical effort has
gone into obtaining the numerical value of θ for different
models.
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In this work we present the first estimate for a persis-
tence exponent extracted from financial data.

Long-range correlations in persistent and anti-
persistent random walks were first discussed by
Mandelbrot [14]. Zhang [15] has presented empirical ev-
idence to support that daily returns in composite indices
are not completely randomized. Here, on the other hand,
we study the behaviour of the constituent stock prices.

2 Financial markets

A financial market is an example of a complex many-body
system exhibiting many of the characteristics found in
model systems studied in statistical physics.

There is an element of both co-operation and ‘frustra-
tion’ [16] in the movement of share values. For example,
share values of companies in the same sector tend to move
in the same direction (either up or down) when subjected
to identical external events. A typical case here would be
the movement in the value of shares in oil companies on
the news of over/under production. On the other hand,
there are also companies whose share values move in op-
posite directions given the same event. Here, typical ex-
amples would be the reactions in the share values of com-
panies from the retail and banking sectors on the news of
an increase/decrease in interest rates.

In this work we make no assumptions about any un-
derlying model systems. Rather, we treat the historical
share values of the companies over time as the outcomes
of some ‘experiment’.

The financial market we study is the set of compa-
nies quoted on the London Financial Times Stock Ex-
change 100 (FTSE 100) share index.
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Table 1. A mapping onto Ising spins of the end of day closing
share prices for a typical company quoted on the FTSE 100.

Date t Closing price Si(t)

24 February 1995 0 166.00 Base price

27 February 1995 1 166.50 +1

28 February 1995 2 172.75 +1

1 March 1995 3 167.00 +1

2 March 1995 4 161.75 −1

3 Method

The data used in this study was obtained from Datas-
tream [17], a database of financial information, and refers
to the end of day prices over the randomly chosen ten
year period from 24 February 1995 to 1 February 2005.
The data were mapped onto Ising spins using the proce-
dure outlined below.

The ‘base’ share price, (P b
i (t = 0), i = 1 . . . , 100), of

each of the companies appearing in FTSE 100 at the end
of trading on 24 February 1995 was noted to 2 decimal
places. All prices for the shares used in this work were
taken to be the closing values at the end of trading. At
t = 1 (the end of trading on the next day) the share price
of each company, Pi(t = 1), i = 1 . . . , 100, was compared
with the corresponding base price.

We allocate a value Si(t = 0) = +1 if Pi(t = 1) ≥
P b

i (t = 0) and a value of Si(t = 0) = −1 if Pi(t = 1) <
P b

i (t = 0). Table 1 gives a typical example of the map-
ping. Note that the value of the spin is determined with
reference to the base price and not the previous closing
price. Furthermore, in this work we disregard all fluctu-
ations which may have taken place during the day and
simply use the end of closing prices. In the example dis-
cussed in Table 1, as the spin has ‘flipped’ when t = 4, the
value of Si(t ≥ 4) = −1, irrespective of subsequent closing
prices.

The values {Si(t = 0), i = 1, . . . 100} form the initial
configuration for our ‘spin’ system. All of the subsequent
10 years worth of data was converted into possible values
of Ising spins, Si(t), using the share values at t = 0 as the
base. As a result, we are able to use Si(t) to track the value
of the underlying share relative to its base price. It is worth
noting that companies have to satisfy certain qualification
criteria before they are included in the FTSE 100 [18]. As
a result, in practice, a given company’s presence in the
FTSE 100 can fluctuate from year to year. In our anal-
ysis we restricted ourselves to the core set of companies
remaining in the FTSE 100 throughout the time period
under consideration.

Hence, the first time Si(t) �= Si(t = 0) corresponds to
the underlying share value either going above (Si(t) = +1)
or below (Si(t) = −1) the base price also for the first
time. This gives us a direct analogy with the persistence
problem that has been extensively studied in spin systems.

At each time step, we count the number of spins that
still persist in their initial (t = 0) state by evaluating [19]

ni(t) = (Si(t)Si(0) + 1)/2. (2)
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Fig. 1. A plot of ln R(t) against ln t for the data commencing
24 February 1995. The two straight lines are guides to the eye
and have slopes −0.4 and −1.4 as indicated.

Initially, ni(0) = 1 for all i. It changes to zero when a spin
flips (that is, the underlying share price goes above/below
the base price) for the first time. Note that once ni(t) = 0,
it remains so for all subsequent calculations.

The total number, n(t), of spins which have never
flipped until time t is then given by

n(t) =
∑

i

ni(t). (3)

A key quantity of interest is R(t), the density of non-
flipping spins [1]

R(t) = n(t)/N, (4)

where N is the number of companies monitored (note
that N is not necessarily 100 for the reasons outlined ear-
lier). The actual values of N used are stated below. How-
ever, it’s worth noting that, in principle, we are dealing
with a model system where the spins are interacting with
all other spins. As a result, we do not believe that our
system of spins is too small.

4 Results

We now discuss our results. In this initial study, three
different time periods were considered:

a) 24 February 1995 to 1 February 2005 (N = 79);
b) 9 January 1996 to 28 December 2000 (N = 79);
c) 3 January 2000 to 3 January 2005 (N = 92).

These sets were selected at random. For each time period,
the initial and subsequent spin configurations were gener-
ated as outlined above and the resulting data analysed for
persistence behaviour.

In Figure 1 we show a log-log plot of the density of
non-flipping spins against time for the first set of data
commencing 24 February 1995. There is evidence for an
initial power-law decay (slope = −0.4), leading to a faster
subsequent decay with slope = −1.4.
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Fig. 2. A log-log plot of the data commencing 9 January 1996.
The straight line (guide to the eye) has a slope of −0.33.

A key feature of Figure 1 is that nearly all of the spins
have flipped after ln t ≈ 4. This corresponds to approxi-
mately 30−50 days of trading on the markets.

Note that we are not distinguishing between those
shares that remain above or below their base values. There
are also a few shares (in this case just 2) that still persist
in their initial state over the entire observation period of
10 years. To investigate the problem further, the same
data was partitioned into essentially two 5-year blocks as
outlined above. The analysis was repeated on each of the
two sets of data. In Figure 2 we plot lnR(t) against ln t
for the data commencing 9 January 1996. Note that for
this plot the base prices are determined by close of trading
on 9 January 1996. Once again, there is clear evidence for
a power-law decay. This time, however, the slope of the
linear fit is −0.33.

Finally Figure 3 show a similar plot for the data com-
mencing 3 January 2000. once again, we have evidence for
initial power-law decay (slope = −0.55) and most of the
spins appear to have flipped after ln t ≈ 4.

Although, as expected, there is noise in the data, we see
that in all three cases we have clear evidence of an initial
power-law decay. It’s also clear from the plots that nearly
all of the spins have flipped after a fairly short period
of time, corresponding to approximately 30−50 days of
trading on the markets. However, there are a handful of
spins which do not flip over the entire time period under
consideration.

Furthermore, there appears to be a cross-over to a
faster power-law decay for longer times. This cross-over is
only really evident in Figure 1 as there is too much noise
in the other 2 sets of data. The initial decay in Figure 1
has a slope of −0.4. The faster decay is indicated by the
straight line which has a slope of −1.4. The initial power
law decays are indicated by the straight lines in Figures 2
and 3. The cross-over could be a signature of the market
reacting to external events such as significant interest rate
variations or political news.

From the linear fits, we can extract a value of θf rang-
ing from 0.33 to 0.55. As a consequence, we estimate the
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Fig. 3. A log-log plot of the data commencing 3 January 2000.
Once again, the straight line (slope −0.55) is a guide to the eye.

persistence exponent for the financial data to be ∼0.5.
We believe this to be the first estimate of a persistence
exponent from financial data.

Our value for θf is not inconsistent with the value ob-
tained from computer simulations of the 2D Ising model
at a non-zero temperature [5]. This is an intriguing result
as we have made no assumptions whatsoever about the
underlying model which gives rise to the financial data.
Of course, in our analysis, the value of each Si(t) incorpo-
rates the overall performance of the shares of the under-
lying company relative to the base value.

5 Conclusion

To conclude, we have used a novel mapping to map the
share values quoted on the London Financial Times Stock
Exchange 100 share index onto Ising spins. As a result,
we extracted a value of ∼0.5 for the persistence expo-
nent. This should be regarded as an initial estimate and
further work is required to confirm the value. It should
be noted that, out of necessity, we worked with end of
day closing prices. Ideally, it would be better to use tick-
data. It’s remarkable that our value is not inconsistent
with the value of the persistence exponent obtained for
the 2D-Ising model at non-zero temperature. This obser-
vation justifies further investigation.
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